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ABSTRACT
Runt-related (Runx) transcriptional regulators play essential roles in various cell fate determination processes, and dysfunction of these

regulators causes many human diseases. Considerable insight into the functions of Runx proteins was provided mainly by studies of

hematopoietic and skeletal disorders. Recently, extensive investigations have revealed new functions of these transcription factors in immune

cell differentiation and functioning. In the present review, we discuss the mechanisms of selective IgA production in the intestine and report

the involvement of Runx proteins in this process. J. Cell. Biochem. 112: 409–414, 2011. � 2010 Wiley-Liss, Inc.
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R unt-related (Runx) genes are evolutionarily conserved

transcription factors that determine cell fate by regulating

lineage-specific gene expression. Three Runx genes have been

reported in mammals; Runx1 plays a key role in definitive

hematopoiesis and is frequently involved in the pathogenesis of

human leukemia [Okuda et al., 1996; Wang et al., 1996; Osato, 2004;

Chen et al., 2009], Runx2 is essential for bone development [Komori

et al., 1997; Otto et al., 1997] and haploinsufficiency of it causes

cleidcranial displasia, and Runx3 is a tumor suppressor involved

in gastric cancer [Li et al., 2002]. In addition, Runx3 has more

widespread regulatory roles in the differentiation and functioning

of various cell types, including T cells [Taniuchi et al., 2002;

Kohu et al., 2005; Sato et al., 2005], dendritic cells (DCs) [Fainaru

et al., 2004], natural killer cells [Ohno et al., 2008], B cells [Watanabe

et al., 2010], and proprioceptive dorsal root ganglion neurons [Inoue

et al., 2002; Levanon et al., 2002].

Immunoglobulin A (IgA) is the most abundantly produced Ig

in vivo. In contrast to IgG, which plays a key role in systemic

immune reactions through secretion into the blood, IgA is

predominantly secreted into the gastrointestinal tract. In addition

to the protection against mucosal pathogenic microorganisms,

neutralization of toxins, and protection from epithelial penetration

of microorganisms, IgA controls the size and species of the bacterial

flora in the intestine [Cerutti and Rescigno, 2008; Macpherson et al.,

2008; Mora and von Andrian, 2009; Stavnezer and Kang, 2009;

Fagarasan et al., 2010]. Among the various factors, TGF-b1 plays a

special role in IgA class switch recombination (CSR) because TGF-b1

is required for IgA switch induction of splenic B cells in vitro

[Sonoda et al., 1989]; it was also reported that TGF-b1-deficient and

B cell-specific TGF-b1 receptor II-deficient mice have low levels

of IgA [van Ginkel et al., 1999; Cazac and Roes, 2000]. Recent

findings indicate that Runx proteins play essential roles in this

signaling pathway [Shi and Stavnezer, 1998; Hanai et al., 1999;

Pardali et al., 2000; Zhang and Derynck, 2000; Ito and Miyazono,

2003; Miyazono et al., 2004; Javed et al., 2008].

CSR REGULATION

Humoral immunity is dependent on the expression of antibodies

that are specific for foreign antigens and that possess specialized

effector functions. To generate diverse antigen receptors, variable

(V), diversity (D), and joining (J) gene segments are assembled

through a process known as VDJ recombination during early B

cell development. After migration to secondary lymphoid organs,

antigen-stimulated mature B cells replace their Cm constant region

gene with other constant region isotypes through CSR. Therefore,

CSR is required for the expression of antibodies that have the

same antigen specificity but a different effector function. This

process is mediated by an intrachromosomal recombinational event

between the switch (S) region of the Cm region and one of the

downstream S regions. The target specificities of CSR are determined

by cytokines through the control of germ line transcription (GLT)

[Honjo et al., 2002; Chaudhuri and Alt, 2004; Ramiro and

Nussenzweig, 2004; Sugai et al., 2005; Longerich et al., 2006;

Stavnezer et al., 2008]. For example, interferon-g induces GLT of

g2a, whereas TGF-b1 induces GLT of g2b and a. On the other hand,

interleukin-4 induces GLT of g1 and e. GLT initiates CSR by
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recruiting activation-induced cytidine deaminase (AID) to target

loci [Nambu et al., 2003]. Recent studies indicated that stalled RNA

polymerase II and Stg5 are required for AID recruitment to target

loci [Pavri et al., 2010]. After deamination of the deoxycytidine

at the transcribed S regions by AID, double-strand breaks generated

by base excision repair or mismatch repair machineries are repaired

by the nonhomologous end joining pathway [Honjo et al., 2002;

Chaudhuri and Alt, 2004; Ramiro and Nussenzweig, 2004; Sugai

et al., 2005; Longerich et al., 2006; Stavnezer et al., 2008] (Fig. 1).

SITES AND FACTORS FOR GENERATION OF
IgA-PRODUCING CELLS

In germ-free mice, IgA production in the intestinal mucosa is

severely affected; however, the IgA production normalizes within a

few weeks following intestinal bacterial colonization. Thus, IgA

production depends on bacterial stimulation in the intestine

[Hooper and Macpherson, 2010]. Accordingly, skewed IgA CSR

occurs in gut-associated lymphoid tissues (GALTs) called Peyer’s

patches, isolated lymphoid follicles, and the lamina propria (LP) of

the intestine [Cerutti and Rescigno, 2008; Macpherson et al., 2008;

Stavnezer and Kang, 2009; Fagarasan et al., 2010; Hooper and

Macpherson, 2010]. However, the serum IgA level in germfree

mice is maintained at approximately half the level maintained in

normal mice, suggesting that serum IgA is partly produced in a

manner independent of mucosal IgA.

In general, CSR requires two signals; one stimulates GLT

of specific isotypes induced by several cytokines, and another is

delivered by ligation of CD40 on B cells with the CD40 ligand

(CD40L) on activated T cells. However, IgA production is not so

abrogated in CD40- or CD40L-deficient mice and humans,

Fig. 1. Schematic representation of the murine heavy chain locus. The variable region of the immunoglobulin heavy chain gene is assembled from VH, DH, and JH gene

segments by VDJ recombination. After completing VDJ recombination at heavy and light chain loci, B cells produce IgM antibody. Subsequently, secondary isotypes are produced

by CSR, which exchanges the Cm constant region gene for other downstream constant region genes. The CSR target is determined by cytokines through the induction of GLT at

the target locus. For IgA CSR, TGF-b1 and RAs induce aGLT and promote IgA CSR.
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indicating the existence of other costimulatory signals for IgA CSR.

As expected, B cell-activating factor of tumor necrosis factor family

(BAFF, also known as BLyS) and a proliferation-inducing ligand

(APRIL) were identified as structurally and functionally related to

CD40L and were found to stimulate CSR to IgG and IgA in vitro. B

cells express three receptors for these cytokines, BAFF receptor

(BAFF-R), transmembrane activator, and CAML interactor (TACI),

and B cell maturation antigen (BCMA). BAFF interacts with all three

receptors, whereas APRIL binds BCMA and TACI. Because BAFF- or

BAFF-R-deficient mice display defects in B cell generation, IgA CSR

cannot be estimated in these models. TACI mutations have been

found in IgA-deficient and common variable immunodeficient

individuals. In addition, TACI-deficient mice show low IgA levels

[von Bulow et al., 2001]. One line of APRIL-deficient mice displayed

IgA deficiency [Castigli et al., 2004], while another line that

generated independently showed normal IgA levels [Varfolomeev

et al., 2004]. The biological relevance of BAFF and APRIL signaling in

IgA CSR was thus estimated. Recently, it was reported that a DC subset

from small intestinal LP and GALT produces BAFF andAPRIL via Toll-

like receptor (TLR) signaling [Tezuka et al., 2007] (Fig. 2), the family of

which comprises various pattern recognition receptor families that are

required for sensingmicroorganisms by recognizing several molecules

expressed by these microorganisms. In addition, it was demonstrated

that human colon epithelial cells express BAFF and APRIL during

Fig. 2. IgA production in the intestine. IgA CSR requires T cell help (CD40L) or BAFF/APRIL signaling. In addition to these signals, all-trans retinoic acids and TGF-b1 are

required for inducing aGLT. In the intestine, epithelial cells, DCs, macrophages, and monocytes produce APRIL and BAFF. In addition, many cell types produce RA as shown here.

Recent studies indicated that there are various DC subsets within the intestine; known surface markers and their cytokine-producing properties are also shown.
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stimulationwith TLR (Fig. 2). These activities are believed to contribute

to local switching to IgA in the colon.

The involvement of retinoic acids (RAs) in IgA production

was demonstrated previously using vitamin A-deficient mice

and rats. In vitamin A-deficient mice, reduced numbers of IgA-

producing cells were observed in LP of the small intestine; the level

of IgA in the serum, however, was not affected [Mora et al., 2006].

Thus, the effect of RA on IgA production is not systemic but

is specific to the intestine. Recent studies further indicated that DCs

from GALT or LP, but not from the spleen, have the ability to

enhance IgA CSR partly by producing RA via the oxidation of

RA precursors [Mora et al., 2006; Uematsu et al., 2008] (Fig. 2).

Several reports further noted that intestinal epithelial cells and

intestinal LP macrophages also express retinal dehydrogenases and

secrete RA (Fig. 2). Analysis of mice deficient in the inducible form

of nitric oxide synthase (iNOS) showed that IgA CSR in vivo is

dependent on this enzyme. iNOS is expressed by DCs from LP and

GALT but not from the spleen, and this expression of iNOS depends

on TLR signaling (Fig. 2). NO produced by iNOS appears to be

important for the normal expression of TGF-b1 receptor II, Smad3,

and Runx3 in activated B cells, as well as for the production of BAFF

and APRIL by DCs [Tezuka et al., 2007].

It is also well known that GALT and LP are rich in TGF-b1. In

addition, subsets of LPDCs and LP stromal cells (LSCs) promote IgA

CSR partly through TGF-b1 secretion. Moreover, mucosal DCs

express the integrins avb6 and avb8, which activate latent TGF-b1

in vivo [Atarashi et al., 2008] (Fig. 2). These findings further support

the hypothesis that GALTs are rich in IgA-inducing factors, and thus

skewed IgA CSR takes place in the intestine. In summary, various

intestinal cells have sensing systems for bacterial invasion, one

of which is TLR, and these cells utilize the sensing signals to create

optimal conditions for IgA CSR promotion.

RUNX FUNCTIONS IN IgA PRODUCTION

As described above, various types of cells in the intestinal region

contribute to the establishment of optimal conditions for skewed

IgA CSR. Because Runx proteins are expressed in intestinal epithelial

cells, DCs, macrophages, T cells, and B cells, the functions of Runx

may include the regulation of IgA production in vivo [Mora and von

Andrian, 2009]. Among the three Runx proteins, special attention

has been paid to Runx3, as loss of this protein is associated with

defects in DC function and development of colitis and asthma-like

features [Brenner et al., 2004; Fainaru et al., 2004]. Runx3-deficient

mice have a defect in DC function in response to TGF-b1, which is

not believed to be directly related to its function in IgA production.

On the other hand, accumulating evidence indicates that Runx3

is a positive regulator for CD103 expression in various cell

types [Grueter et al., 2005]. Furthermore, it was shown that mucosal

CD103þ DCs can induce regulatory T cells via TGF-b1 and RA-

dependent mechanisms [Coombes et al., 2007]; both these factors are

also required for IgA CSR (Fig. 2). Accordingly, it is believed that

Runx3 should work as a positive regulator for IgA CSR acting within

DCs. However, to elucidate its role, further and more extensive

investigations are required.

Several studies revealed that Runx transcription factors act in

concert with Smad proteins in their response to the signals of the

TGF-bfamily. Runx and Smad proteins interact with each other and

can enhance transcription synergistically, as demonstrated in

reporter assays using the promoter of aGLT [Shi and Stavnezer,

1998; Hanai et al., 1999; Pardali et al., 2000; Zhang and Derynck,

2000; Javed et al., 2008]. Expression analysis of various Runx

proteins in I.29, CH12, and splenic B cells under IgA-inducing

conditions suggests that Runx3 is responsible for IgA CSR [Shi and

Stavnezer, 1998]. Therefore, Runx3 is believed to function as an

activator of IgA CSR in B cells. In this regard, Groner et al.

demonstrated that Runx3-deficient B cells exhibited impaired IgA

CSR in vitro, whereas the IgA levels in bronchoalveolar lavage from

Runx3-dificient mice were increased significantly. Such discre-

pancies can be attributed partly to the difficulty in investigating IgA

CSR in vitro. At the time of the study by Groner et al., the efficiency

of the in vitro IgA CSR system was extremely low. In our recent

study, we examined the effect of Runx3-deficiency in IgA CSR in a

different genetic background using the same experimental setting

and confirmed the results from Groner’s study; we found that

Runx3 exhibits some positive role in IgA CSR. However, defects in

IgA CSR of Runx3-deficient B cells cannot be observed always,

which indicates that various unknown factors may affect the results.

Because all three Runx proteins are expressed in B cells and Runx1 is

required for hematopoietic stem cell generation, we examined the

effects of Runx2 and Runx3 on IgA CSR. Furthermore, Runx2- and

Runx3-deficient mice died within a short period after birth;

therefore, we generated Runx2/3-deficient lymphocytes in RAG2�/�

mice by infusing Runx2/3-deficient fetal liver cells. As expected,

IgA production was almost completely blocked in the RAG2�/�mice

having Runx2/3-deficient lymphocytes [Watanabe et al., 2010].

To determine the Runx protein signals involved in IgA CSR, we

established an efficient IgA CSR system using only soluble factors

and found that RA and TGF-b1 act in synergy to induce IgA CSR.

In this in vitro IgA switching system, APRIL played a special role.

The addition of APRIL, but not BAFF, to the culture system enhanced

the efficiency of IgA CSR significantly. We further determined the

effect of APRIL on aGLT and found that the enhancement was

not significant. Moreover, APRIL may have promoted cell survival

in this specialized culture system. Therefore, we propose that

APRIL and BAFF function as B cell survival factors in various IgA

switch-inducing conditions in vivo, in addition to their known

functions in inducing aGLT. Using this system, we found that

Runx proteins are required not only for TGF-b1-dependent IgA

CSR but also for RA-dependent IgA CSR. The existence of both

pathways in IgA CSR is supported by observations where serum IgA

levels in RAG2�/� mice with Runx2/3-deficient lymphocytes were

found to be lower than the serum IgA levels in TGF-b1-deficient

mice.

In Runx2/3-deficient B cells, IgA CSR by TGF-b1 is completely

blocked. This indicates that TGF-b1-Smad signaling pathways work

only in the presence of Runx proteins at theaGL promoter. In addition,

Runx binding to Smad proteins and TAZ are not required for induction

of aGLT and consequent IgA CSR. Therefore, Runx proteins function

as synergistic coregulators of aGLT or provide accessible chromatin

structures to Smad proteins, independent of their interaction.
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The involvement of Runx proteins in RA-dependent IgA CSR was

confirmed using Runx2/3-deficient B cells. However, we could not

determine the exact retinoic acid receptor response element (RARE)

within the aGL promoter. Elucidating the mechanism of action of

RAR and Runx proteins in the induction of aGLT is the next

important issue. Currently, we are investigating the genuine RARE

within the 3’ enhancer of the heavy chain locus as well as examining

the physical interaction between Runx and RAR proteins (Fig. 3).

In conclusion, we report that Runx proteins play pivotal roles in

establishing good relationships between various commensal bacteria

and provide a healthy intestinal environment by regulating the action

of various cell types, including epithelial cells, DCs, T cells, and B cells

in the intestine. Increased knowledge of the functions of Runx proteins

in these cell types will facilitate the understanding of how Runx

proteins work in general. This information is expected to contribute to

understanding the functions of Runx proteins in tumorigenesis, cell

differentiation, and other important biological issues.
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